Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 48(14): 7883-7898, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32609810

RESUMO

Circular DNA can arise from all parts of eukaryotic chromosomes. In yeast, circular ribosomal DNA (rDNA) accumulates dramatically as cells age, however little is known about the accumulation of other chromosome-derived circles or the contribution of such circles to genetic variation in aged cells. We profiled circular DNA in Saccharomyces cerevisiae populations sampled when young and after extensive aging. Young cells possessed highly diverse circular DNA populations but 94% of the circular DNA were lost after ∼15 divisions, whereas rDNA circles underwent massive accumulation to >95% of circular DNA. Circles present in both young and old cells were characterized by replication origins including circles from unique regions of the genome and repetitive regions: rDNA and telomeric Y' regions. We further observed that circles can have flexible inheritance patterns: [HXT6/7circle] normally segregates to mother cells but in low glucose is present in up to 50% of cells, the majority of which must have inherited this circle from their mother. Interestingly, [HXT6/7circle] cells are eventually replaced by cells carrying stable chromosomal HXT6 HXT6/7 HXT7 amplifications, suggesting circular DNAs are intermediates in chromosomal amplifications. In conclusion, the heterogeneity of circular DNA offers flexibility in adaptation, but this heterogeneity is remarkably diminished with age.


Assuntos
Senescência Celular/genética , Replicação do DNA , DNA Circular/química , Saccharomyces cerevisiae/genética , DNA Circular/análise , Variação Genética , Padrões de Herança , Proteínas de Transporte de Monossacarídeos/genética , Sequências Repetitivas de Ácido Nucleico , Origem de Replicação , Proteínas de Saccharomyces cerevisiae/genética
2.
Exp Gerontol ; 111: 141-153, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30030137

RESUMO

Exercise training has been reported to prevent the age-induced decline in muscle mass and fragmentation of mitochondria, as well as to affect autophagy and mitophagy. The interaction between these pathways during aging as well as the similarity between such changes in human and mouse skeletal muscle is however not fully understood. Therefore the aim of the present study was to test the hypothesis that cellular degradation pathways, including apoptosis, autophagy and mitophagy are coordinately regulated in mouse and human skeletal muscle during aging and lifelong exercise training through a PGC-1α-p53 axis. Muscle samples were obtained from young untrained, aged untrained and aged lifelong exercise trained men, and from whole-body PGC-1α knockout mice and their littermate controls that were either lifelong exercise trained or sedentary young and aged. Lifelong exercise training prevented the aging-induced reduction in PGC-1α, p53 and p21 mRNA as well as the increase in LC3II and BNIP3 protein in mouse skeletal muscle, while aging decreased the BAX/Bcl-2 ratio, LC3I and BAX protein in mouse skeletal muscle without effects of lifelong exercise training. In humans, aging was associated with reduced PGC-1α mRNA as well as decreased p62 and p21 protein in skeletal muscle, while lifelong exercise training increased BNIP3 protein and decreased p53 mRNA. In conclusion, there was a divergent regulation of autophagy and apoptosis in mouse muscle with aging and lifelong exercise training, whereas healthy aged human skeletal muscle seemed rather robust to changes in apoptosis, autophagy and mitophagy markers compared with mouse muscle at the investigated age.


Assuntos
Envelhecimento/fisiologia , Apoptose , Autofagia , Exercício Físico/fisiologia , Músculo Esquelético/metabolismo , Condicionamento Físico Animal/fisiologia , Adulto , Animais , Proteínas Relacionadas à Autofagia/fisiologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Músculo Esquelético/patologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo , Adulto Jovem
3.
J Vis Exp ; (110): e54239 |, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-27077531

RESUMO

Extrachromosomal circular DNAs (eccDNAs) are common genetic elements in Saccharomyces cerevisiae and are reported in other eukaryotes as well. EccDNAs contribute to genetic variation among somatic cells in multicellular organisms and to evolution of unicellular eukaryotes. Sensitive methods for detecting eccDNA are needed to clarify how these elements affect genome stability and how environmental and biological factors induce their formation in eukaryotic cells. This video presents a sensitive eccDNA-purification method called Circle-Seq. The method encompasses column purification of circular DNA, removal of remaining linear chromosomal DNA, rolling-circle amplification of eccDNA, deep sequencing, and mapping. Extensive exonuclease treatment was required for sufficient linear chromosomal DNA degradation. The rolling-circle amplification step by φ29 polymerase enriched for circular DNA over linear DNA. Validation of the Circle-Seq method on three S. cerevisiae CEN.PK populations of 10(10) cells detected hundreds of eccDNA profiles in sizes larger than 1 kilobase. Repeated findings of ASP3-1, COS111, CUP1, RSC30, HXT6, HXT7 genes on circular DNA in both S288c and CEN.PK suggests that DNA circularization is conserved between strains at these loci. In sum, the Circle-Seq method has broad applicability for genome-scale screening for eccDNA in eukaryotes as well as for detecting specific eccDNA types.


Assuntos
DNA Circular/isolamento & purificação , DNA Fúngico/isolamento & purificação , Herança Extracromossômica/genética , Saccharomyces cerevisiae/genética , DNA Circular/genética , DNA Fúngico/genética , Células Eucarióticas , Genoma , Genoma Fúngico
4.
G3 (Bethesda) ; 6(2): 453-62, 2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26681518

RESUMO

Extrachromosomal circular DNA (eccDNA) derived from chromosomal Ty retrotransposons in yeast can be generated in multiple ways. Ty eccDNA can arise from the circularization of extrachromosomal linear DNA during the transpositional life cycle of retrotransposons, or from circularization of genomic Ty DNA. Circularization may happen through nonhomologous end-joining (NHEJ) of long terminal repeats (LTRs) flanking Ty elements, by Ty autointegration, or by LTR-LTR recombination. By performing an in-depth investigation of sequence reads stemming from Ty eccDNAs obtained from populations of Saccharomyces cerevisiae S288c, we find that eccDNAs predominantly correspond to full-length Ty1 elements. Analyses of sequence junctions reveal no signs of NHEJ or autointegration events. We detect recombination junctions that are consistent with yeast Ty eccDNAs being generated through recombination events within the genome. This opens the possibility that retrotransposable elements could move around in the genome without an RNA intermediate directly through DNA circularization.


Assuntos
DNA Circular , Plasmídeos , Retroelementos , Saccharomyces cerevisiae/genética , Sequências Repetidas Terminais , Sequência de Bases , Pontos de Quebra do Cromossomo , DNA Fúngico , Evolução Molecular , Dados de Sequência Molecular , Família Multigênica , Recombinação Genética , Alinhamento de Sequência
5.
Proc Natl Acad Sci U S A ; 112(24): E3114-22, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26038577

RESUMO

Examples of extrachromosomal circular DNAs (eccDNAs) are found in many organisms, but their impact on genetic variation at the genome scale has not been investigated. We mapped 1,756 eccDNAs in the Saccharomyces cerevisiae genome using Circle-Seq, a highly sensitive eccDNA purification method. Yeast eccDNAs ranged from an arbitrary lower limit of 1 kb up to 38 kb and covered 23% of the genome, representing thousands of genes. EccDNA arose both from genomic regions with repetitive sequences ≥ 15 bases long and from regions with short or no repetitive sequences. Some eccDNAs were identified in several yeast populations. These eccDNAs contained ribosomal genes, transposon remnants, and tandemly repeated genes (HXT6/7, ENA1/2/5, and CUP1-1/-2) that were generally enriched on eccDNAs. EccDNAs seemed to be replicated and 80% contained consensus sequences for autonomous replication origins that could explain their maintenance. Our data suggest that eccDNAs are common in S. cerevisiae, where they might contribute substantially to genetic variation and evolution.


Assuntos
DNA Circular/genética , DNA Fúngico/genética , Saccharomyces cerevisiae/genética , Sequência de Bases , DNA Circular/isolamento & purificação , DNA Fúngico/isolamento & purificação , Evolução Molecular , Herança Extracromossômica , Variação Genética , Genoma Fúngico , Modelos Genéticos , Mutação , Origem de Replicação
6.
Commun Integr Biol ; 6(3): e23933, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23713139

RESUMO

Microbial populations adapt to environmental fluctuations through random switching of fitness-related traits in individual cells. This increases the likelihood that a subpopulation will be adaptive in a future milieu. However, populations are particularly challenged when several environment factors change simultaneously. We suggest that a population can rapidly adapt to multiple environmental changes if individual members stochastically flip a hub-switch that controls a set of adaptive phenotypes in a single event. This mechanism of coupling phenotypic outcomes via a hub-switch can protect a population against large fluctuations in size. Here we report that the general amino acid transporter Gap1 is a potential hub-switch. The GAP1 gene is flanked by two direct repeats that can lead to GAP1 deletions (∆gap1) and a self-replicating GAP1 circle. Thus, an isogenic GAP1 population can differentiate into two variant, reversible genotypes, ∆gap1 or GAP1 (circle). These subpopulations have different phenotypic advantages. A ∆gap1 population has a selective advantage on allantoin or ammonium as a nitrogen source and high stress tolerance. Advantages of the GAP1 population include amino acid uptake, fast energy recruitment by trehalose mobilization, and in some cases, adherent biofilm growth. Our proposed model of a hub-switch locus enhances the bet-hedging model of population dynamics.

7.
FEBS J ; 276(20): 5936-48, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19740107

RESUMO

The function of S100A4, a member of the calcium-binding S100 protein family, has been associated with tumor invasion and metastasis. Although an essential pro-metastatic role of extracellular S100A4 in tumor progression has been demonstrated, the identification of the precise underlying mechanisms and protein partners (receptors) has remained elusive. To identify putative targets for extracellular S100A4, we screened a phage display peptide library using S100A4 as bait. We identified three independent peptide motifs with varying affinities for the S100A4 protein. Sequence analyses indicated that the most abundant peptide mimicked the F/YCC motif present in the epidermal growth factor domain of ErbB receptor ligands. S100A4 selectively interacted with a number of epidermal growth factor receptor (EGFR) ligands, demonstrating highest affinity for amphiregulin. Importantly, we found that S100A4 stimulated EGFR/ErbB2 receptor signaling and enhanced the amphiregulin-mediated proliferation of mouse embryonic fibroblasts. S100A4-neutralizing antibodies, as well as EGFR- and ErbB2 receptor-specific tyrosine kinase inhibitors, blocked these effects. The present results suggest that extracellular S100A4 regulates tumor progression by interacting with EGFR ligands, thereby enhancing EGFR/ErbB2 receptor signaling and cell proliferation. Structured digital abstract: * MINT-7256556: EGF (uniprotkb:P01133) binds (MI:0407) to S100A4 (uniprotkb:P26447) by far western blotting (MI:0047) * MINT-7256512: BC (uniprotkb:P35070) binds (MI:0407) to S100A4 (uniprotkb:P26447) by far western blotting (MI:0047) * MINT-7256485, MINT-7256618, MINT-7256636: AR (uniprotkb:P15514) binds (MI:0407) to S100A4 (uniprotkb:P26447) by far western blotting (MI:0047) * MINT-7256494: HB-EGF (uniprotkb:Q99075) binds (MI:0407) to S100A4 (uniprotkb:P26447) by far western blotting (MI:0047) * MINT-7256502: P53 (uniprotkb:P04637) binds (MI:0407) to S100A4 (uniprotkb:P26447) by far western blotting (MI:0047) * MINT-7256654: S100A2 (uniprotkb:P29034) binds (MI:0407) to AR (uniprotkb:P15514) by far western blotting (MI:0047) * MINT-7256693: S100A5 (uniprotkb:P33763) binds (MI:0407) to AR (uniprotkb:P15514) by far western blotting (MI:0047) * MINT-7256593: S100A4 (uniprotkb:P26447) binds (MI:0407) to BC (uniprotkb:P35070) by pull down (MI:0096) * MINT-7256567: S100A4 (uniprotkb:P26447) binds (MI:0407) to AR (uniprotkb:P15514) by pull down (MI:0096).


Assuntos
Receptores ErbB/metabolismo , Peptídeos/metabolismo , Proteínas S100/química , Proteínas S100/metabolismo , Sequência de Aminoácidos , Anfirregulina , Animais , Sítios de Ligação , Far-Western Blotting , Western Blotting , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cromatografia em Gel , Família de Proteínas EGF , Ensaio de Imunoadsorção Enzimática , Glicoproteínas/metabolismo , Glicoproteínas/farmacologia , Humanos , Imunoprecipitação , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Camundongos , Dados de Sequência Molecular , Biblioteca de Peptídeos , Peptídeos/química , Peptídeos/genética , Ligação Proteica , Receptor ErbB-2/metabolismo , Proteína A4 de Ligação a Cálcio da Família S100 , Proteínas S100/genética , Proteínas S100/farmacologia , Homologia de Sequência de Aminoácidos , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...